SDF-9, a protein tyrosine phosphatase-like molecule, regulates the L3/dauer developmental decision through hormonal signaling in C. elegans.

نویسندگان

  • Kiyotaka Ohkura
  • Norio Suzuki
  • Takeshi Ishihara
  • Isao Katsura
چکیده

The dauer larva of the nematode Caenorhabditis elegans is a good model system for investigating the regulation of developmental fates by environmental cues. Here we show that SDF-9, a protein tyrosine phosphatase-like molecule, is involved in the regulation of dauer larva formation. The dauer larva of sdf-9 mutants is different from a normal dauer larva but resembles the dauer-like larva of daf-9 and daf-12 dauer-constitutive mutants. Like these mutants, the dauer-constitutive phenotypes of sdf-9 mutants were greatly enhanced by cholesterol deprivation. Epistasis analyses, together with the relationship between sdf-9 mutations and daf-9 expression, suggested that SDF-9 increases the activity of DAF-9 or helps the execution of the DAF-9 function. SDF-9 was expressed in two head cells in which DAF-9 is expressed. By their position and by genetic mosaic experiments, we identified these cells as XXXL/R cells, which are known as embryonic hypodermal cells and whose function at later stages is unknown. Killing of the sdf-9-expressing cells in the wild-type first-stage larva induced formation of the dauer-like larva. Since this study on SDF-9 and former studies on DAF-9 showed that the functions of these proteins are related to those of steroids, XXXL/R cells seem to play a key role in the metabolism or function of a steroid hormone(s) that acts in dauer regulation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

daf-12 regulates developmental age and the dauer alternative in Caenorhabditis elegans.

From egg through adult, C. elegans has six life stages including an option for dauer formation and diapause at larval stage L3 in adverse environments. Somatic cells throughout the organism make consistent choices and advance in unison, suggesting a mechanism of coordinate regulation at these stage transitions. Earlier studies showed that daf-12, which encodes a nuclear receptor (W. Yeh, 1991, ...

متن کامل

Two Membrane-Associated Tyrosine Phosphatase Homologs Potentiate C. elegans AKT-1/PKB Signaling

Akt/protein kinase B (PKB) functions in conserved signaling cascades that regulate growth and metabolism. In humans, Akt/PKB is dysregulated in diabetes and cancer; in Caenorhabditis elegans, Akt/PKB functions in an insulin-like signaling pathway to regulate larval development. To identify molecules that modulate C. elegans Akt/PKB signaling, we performed a genetic screen for enhancers of the a...

متن کامل

The developmental timing regulator HBL-1 modulates the dauer formation decision in Caenorhabditis elegans.

Animals developing in the wild encounter a range of environmental conditions, and so developmental mechanisms have evolved that can accommodate different environmental contingencies. Harsh environmental conditions cause Caenorhabditis elegans larvae to arrest as stress-resistant "dauer" larvae after the second larval stage (L2), thereby indefinitely postponing L3 cell fates. HBL-1 is a key tran...

متن کامل

Caenorhabditis elegans EAK-3 inhibits dauer arrest via nonautonomous regulation of nuclear DAF-16/FoxO activity.

Insulin regulates development, metabolism, and lifespan via a conserved PI3K/Akt pathway that promotes cytoplasmic sequestration of FoxO transcription factors. The regulation of nuclear FoxO is poorly understood. In the nematode Caenorhabditis elegans, insulin-like signaling functions in larvae to inhibit dauer arrest and acts during adulthood to regulate lifespan. In a screen for genes that mo...

متن کامل

Feeding state-dependent regulation of developmental plasticity via CaMKI and neuroendocrine signaling

Information about nutrient availability is assessed via largely unknown mechanisms to drive developmental decisions, including the choice of Caenorhabditis elegans larvae to enter into the reproductive cycle or the dauer stage. In this study, we show that CMK-1 CaMKI regulates the dauer decision as a function of feeding state. CMK-1 acts cell-autonomously in the ASI, and non cell-autonomously i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 130 14  شماره 

صفحات  -

تاریخ انتشار 2003